SARDAR RAJA COLLEGES SARDAR RAJA COLLEGE OF ENGINEERING, ALANGULAM.

DEPARTMENT OF MECHANICAL ENGINEERING MICRO LESSON PLAN

SUBJECT : ME2351 - GAS DYNAMICS AND JET ROPULSION

CLASS : III Year / VI SEM

STAFF: Mr. K. MARIAPPAN, Asst.Prof, DEPT. OF MECHANICAL ENGG.

UNIT I BASIC CONCEPTS AND ISENTROPIC FLOWS

Energy and momentum equations of compressible fluid flows – Stagnation states, Mach waves and Mach cone – Effect of Mach number on compressibility – Isentropic flow through variable ducts – Nozzle and Diffusers – Use of Gas tables.

UNIT II FLOW THROUGH DUCTS

Flows through constant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) – variation of flow properties – Use of tables and charts – Generalised gas dynamics.

UNIT III NORMAL AND OBLIQUE SHOCKS

Governing equations – Variation of flow parameters across the normal and oblique shocks – Prandtl – Meyer relations – Use of table and charts – Applications.

UNIT IV JET PROPULSION

Theory of jet propulsion – Thrust equation – Thrust power and propulsive efficiency – Operation principle, cycle analysis and use of stagnation state performance of ram jet, turbojet, turbofan and turbo prop engines.

UNIT V SPACE PROPULSION

Types of rocket engines – Propellants-feeding systems – Ignition and combustion – Theory of rocket propulsion – Performance study – Staging – Terminal and characteristic velocity – Applications – space flights.

TUTORIALS: 15 TOTAL: 60 PERIODS

10

9

10

10

6

TEXT BOOKS:

1. Anderson, J.D., Modern Compressible flow, McGraw Hill, 3rd Edition, 2003.

2. H. Cohen, G.E.C. Rogers and Saravanamutto, Gas Turbine Theory, Longman Group Ltd., 1980.

3. S.M. Yahya, fundamentals of Compressible Flow, New Age International (P) Limited, New Delhi, 1996.

REFERENCES:

1. P. Hill and C. Peterson, Mechanics and Thermodynamics of Propulsion, Addison – Wesley Publishing company, 1992.

2. N.J. Zucrow, Aircraft and Missile Propulsion, vol.1 & II, John Wiley, 1975.

3. N.J. Zucrow, Principles of Jet Propulsion and Gas Turbines, John Wiley, New York, 1970.

4. G.P. Sutton, Rocket Propulsion Elements, John wiley, 1986, New York.

5. A.H. Shapiro, Dynamics and Thermodynamics of Compressible fluid Flow, , John wiley, 1953, New York.

6. V. Ganesan, Gas Turbines, Tata McGraw Hill Publishing Co., New Delhi, 1999.

7. PR.S.L. Somasundaram, Gas Dynamics and Jet Propulsions, New Age International Publishers, 1996.

8. V. Babu, Fundamentals of Gas Dynamics, ANE Books India, 2008.

SUBJECT DESCRIPTION AND OBJECTIVES

CONTENT

This subject imparts knowledge to the students on compressible flow through ducts, jet propulsion and space propulsion.

SUBJECT OBJECTIVES

- To understand the basic difference between incompressible and compressible flow.
- To understand the phenomenon of shock waves and its effect on flow.
- To gain some basic knowledge about jet propulsion and Rocket Propulsion.

MICRO LESSON PLAN

Hours	LECTURE TOPICS	READING		
UNIT I - BASIC CONCEPTS AND ISENTROPIC FLOWS				
1	Energy and momentum equations of compressible fluid flows	T3		
2	Stagnation states	T3		
3	Problem solving	Т3		
4	Mach waves and Mach cone	T3		
5	Effect of Mach number on compressibility	T3		
6	Problem soving	Т3		
7	Isentropic flow through variable ducts	T3		
8	Nozzle and Diffusers – Use of Gas tables.	Т3		
9	Problem soving	Т3		
UNIT II - FLOW THROUGH DUCTS				
10-11	Flows through constant area ducts with heat transfer (Rayleigh	т2		
	flow) and Friction	T3		
12-14	Problem soving	T3		
15-16	Flows through constant area ducts without heat transfer (Fanno flow)	Т3		
17	variation of flow properties	Т3		
18	Use of tables and charts – Generalised gas dynamics	T3		
19-21	Problem soving	Т3		
	UNIT III - NORMAL AND OBLIQUE SHOCKS			
22-23	Governing equations – Variation of flow parameters across the normal shocks	Т3		
24-25	Problem soving	T3		
25-26	Governing equations – Variation of flow parameters across the oblique shocks	Т3		
27-28	Problem soving	T3		
29	Prandtl – Meyer relations	T3		
30-31	Problem soving	T3		
32	Use of table and charts – Applications			
33-34	Problem soving	T3		
UNIT IV - JET PROPULSION				
35	Theory of jet propulsion	T3		
36	Thrust equation – Thrust power and propulsive efficiency	T3		
37-38	Problem soving	Т3		
39	Operation principle, cycle analysis and use of stagnation state performance of ram jet engines.	Т3		
40-41	Problem soving	Т3		
42	Operation principle, cycle analysis and use of stagnation state performance of turbojet engines.(AV Class)	Т3		
43	Problem soving	T3		

44	Operation principle, cycle analysis and use of stagnation state performance of turbofan engines.	T3	
45	Problem soving	T3	
46	Operation principle, cycle analysis and use of stagnation state performance of turbo prop engines. (AV Class)		
47	Problem soving	T3	
UNIT V- SPACE PROPULSION			
48	Types of rocket engines	T3	
49	Propellants-feeding systems	T3	
50	Ignition and combustion	T3	
51	Theory of rocket propulsion.(AV Class)	T3	
52	Performance study	T3	
53-54	Problem soving	T3	
55	Staging – Terminal and characteristic velocity	T3	
56-57	Problem soving	T3	
58	Applications – space flights	T3	
59-60	Problem soving	T3	